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Exact nonplanar traveling solutions for the kinematic model of autowaves in excitable media are constructed
using a nonlinear velocity-curvature relation that is more realistic than the linear~eikonal! approximation. The
physically unrealistic self-crossing fronts, found earlier in the eikonal approximation, are replaced by non-
crossing fronts with cusplike singularities that are reminiscent of ‘‘cellular’’ flame structures. The new solu-
tions put restrictions on possible autowave refraction and reflection regimes found in the eikonal approxima-
tion. A possible role of the unstable branch of the velocity-curvature relation in removing the cusplike
singularities from the present solutions is discussed.@S1063-651X~96!04710-1#

PACS number~s!: 03.40.Kf

I. INTRODUCTION

From the realm of nonlinear dissipative systems that
spontaneously generate spatially and temporally ordered
structures, we are studying waves propagating in so-called
excitable media~EM!—the model prototype of many actual
biological and chemical media@1–3#. The mathematical
theory of EM is based on systems of nonlinear partial differ-
ential equations~PDE’s! of reaction-diffusion type@2,4#.
Two component models

]u

]t
5DuDu1 f ~u,v !,

~1!

]v
]t

5DvDv1g~u,v !

are usually satisfactory to reproduce the basic features of
EM. The dependent variablesu andv are called the excita-
tion and recovery variables, respectively.Du,v are their cor-
responding diffusion coefficients,D is the Laplacian operator
in two or three spatial dimensions~2D or 3D!, and f andg
are appropriate nonlinear kinetic functions. Under appropri-
ate conditions, these equations admit solutions describing
propagating waves of excitation~autowaves! with interesting
geometrical properties.

In the extensive literature of EM two kinds of steady-state
structures~structures propagating at constant speed with in-
variant shape! dominate: moving plane fronts and rotating
spiral waves. In our recent theoretical work we have shown,
using a kinematic approach@5#, that in 2D EM several other
steady-state propagating solutions exist. One example is
V-shaped waves, which have been subsequently studied ex-
perimentally in the Belousov-Zhabotinsky~BZ! reaction and
in numerical experiments with PDE’s@6#. Three other solu-
tions found produce self-crossing fronts~containing one or
an infinite number of loops! and, therefore, could not be
identified with any stationary autowave pattern in homoge-
neous EM. But they turned out to be crucially important for
constructing steady-state patterns in piecewise inhomoge-
neous EM@5,7,8#. The looplike structure of these solutions
is, in fact, an artifact generated by extrapolating the linear

approximation for the velocity-curvature relation of propa-
gating fronts beyond the region of its applicability.

In this paper we improve the kinematic theory of steady-
state autowaves by replacing the eikonal approximation with
a more realistic nonlinear dependence of local front velocity
on front curvature. The nonlinear relation includes a critical
curvature, beyond which sustained wave propagation is im-
possible, and an unstable branch of slow-speed waves. We
construct all nonspiral steady-state wave-front configura-
tions, study their properties and discuss the physical interpre-
tation of these solutions. The consequences of critical curva-
ture for autowave refraction-reflection are investigated.

II. MODEL AND ITS SOLUTIONS
IN THE EIKONAL APPROXIMATION

The strong nonlinearity of PDE models of EM does not
allow for their exact solution and complicates approximate
analytical analysis in the most interesting 2D and 3D cases.
To get results, numerical integration of system~1! has be-
come very popular. Alternatively, large-scale dynamics of
solitary ~noninteracting! fronts in 2D and 3D are often suc-
cessfully treated by geometrical models@4,9–13#, the most
elaborate of which is the so-called ‘‘kinematic approach.’’
The results of kinematic theory are often in good agreement
with numerical@14,15# and approximate analytical@16# cal-
culations on PDE models, and it has proved itself to have
predictive power@6,17,18#. The foundations of kinematic
theory can be found in@3,4,9,19#. Below we outline briefly
only those elements of the approach that are necessary for
understanding this paper.

A. Model equations

The kinematic model is based on the assumption that
shape changes of a solitary, modestly curved front can be
satisfactorily described without keeping track of the dynam-
ics of the excitation pulse. Therefore the kinematic descrip-
tion reduces a pulse structure in 1D to a single point, so that
an excited region in a 2D EM is conceived as an infinitely
thin curved line with a normal vector pointing in the direc-
tion of propagation. Analysis of PDE systems shows that
diffusion terms make the local velocity of the frontV depen-
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dent on front curvaturek, V5V(k). It is convenient then to
specify the shape of the wave front line by an intrinsic equa-
tion k5k( l ) that relates the curvature of the front to arc
length along the frontl . Generally speaking, a propagating
front changes its shape with timet and thereforek5k( l ,t).
We consider only steady-state fronts~those that propagate
with invariable shapes! for which ]k/]t50. Thenk( l ), for
infinitely extended endless fronts@20#, satisfies the following
integro-differential equation,

k~ l !E
0

l

k~j!V„k~j!…dj1
dV„k~ l !…

dl
5v. ~2!

By putting further the right-hand side equal to zero~v50!,
we exclude from present consideration spiral-like solutions
for which v5const.0 @9#. Notice also that such a choice
places the origin~l50! at a point on the front where its
velocity is extremal, (dV/dl) l5050. A boundary condition
k~0!, consistent with the extremal-velocity condition, has to
be specified in order to determine a unique solution of Eq.
~2!.

The intrinsic equationk( l ) defines the front curve
uniquely except for its position and orientation on a plane.
Parametric representation of an actual front line in the Car-
tesian frame of reference can be constructed from the intrin-
sic equation by a standard procedure:

x~ l !5E
0

l

sin„u~j!…dj,

y~ l !5E
0

l

cos„u~j!…dj, ~3!

wherex andy are Cartesian coordinates of the front line, and

u~ l !52E
0

l

k~j!dj ~4!

is the angle between the tangent to the wave front at the
point l and the axisOY, taken as positive if measured clock-
wise from the positive direction of the axisOY.

For noncirculating solutions a simplification of the
integro-differential equation~2! turns out to be possible.
Multiplying Eq. ~2! by V(k), integrating once, and changing
variables froml to u, we get

F E
0

u~ l !
V~u!duG21@V~u!#25@V~0!#2, ~5!

where V~0! denotes the normal velocity of the wave at
u5l50 and is to be distinguished fromV0, the velocity at
k50. The solution of Eq.~5! satisfying the condition
(dV/dl) l5050 is

V~u!5V~0!cos~u!. ~6!

Equation~6! implies that a steady-state wave must move as a
whole along theX axis with a speedV~0!. Differentiating Eq.
~6! with respect tol , gives

dV

dl
5k~ l !A@V~0!#22V2, ~7!

whereV depends onl throughk: V5V„k( l )…. For a given
V5V(k), Eq. ~7! can be rewritten as a first-order differential
equation fork( l ).

B. Solutions of the kinematic model in eikonal approximation

It follows from both experiments@21# and theoretical con-
siderations@22–25# that the dependence of local front veloc-
ity V on curvaturek, for modestly curved fronts, can be
taken as linear

V~k!5V02Dk. ~8!

HereV0 is the velocity of the planar front~k50!, andD is
the diffusion coefficient of the excitation variable. Substitut-
ing Eq. ~8! into Eq. ~7! gives

D
dk

dl
57k~ l !A@V02Dk~0!#22@V02Dk#2. ~9!

Solutions of this equation parametrized by the ‘‘initial’’
valuek~0! have been studied in@5#.

For k~0!,0, the front propagates in the form of a
V-shaped wave@15,17#. Its profile is given by the soliton-
type expression

k~ l !52
1

D

@V~0!#22V0
2

V01V~0!coshS ll 0D
, 2`, l,`, ~10!

with characteristic lengthl 05D$u[V(0)]22V 0
2u%21/2. The

curvature of this front is always negative and its magnitude
decreases exponentially to zero asu l u goes to infinity. The
asymptotic angle between the wings follows directly from
Eq. ~6!,

a5p22u~ l→6`!52 arcsinF V0

V~0!G . ~11!

The V-shaped wave moves uniformly, with velocity
V(0).V0 ~i.e., faster than a planar front!, from left to right
as shown in Fig. 1. Ask~0!→0, the angle between asymp-
totes of theV-shaped wave increases top and the velocity of
the pattern decreases toV0, that is the pattern converts into a
plane wave~k50!.

FIG. 1. Shapes of steady-state autowave fronts corresponding to
solutions of the kinematic model in the eikonal approximation. So-
lutions are parametrized by the ‘‘initial’’ valuek~0!. Properties of
each pattern are discussed in the text.
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Positivek~0! produces space-oscillating fronts described
by

k~ l !52
1

D

@V~0!#22V0
2

V01V~0!cosS ll 0D
. ~12!

As k~0! increases from zero up tok(0).V0/D, both the
amplitude and period of the oscillations in front curvature
decrease: the amplitude fromV0/D to zero, and period
from infinity to 2pD/V0 . The front propagates with a speed
V(0),V0 , from left to right as depicted in Fig. 1. At
k(0)5V0/D the front degenerates to a standing ring of ra-
dius 1/k5V0/D. Whenk~0! becomes greater thanV0/D and
moves toward 2V0/D, the space-oscillating front appears
again but now the behavior of its amplitude and period is
opposite to that which took place whenk~0! ran from zero to
V0/D. Also the direction of front propagation reverses: the
front moves from right to left in Fig. 1 with speed
uV(0)u,V0 .

The valuek(0)52V0/D corresponds to a separatrix solu-
tion, with algebraic soliton-type shape

k~ l !5
2V0 /D

11S l

D/V0
D 2 . ~13!

This front retains only one loop and has asymptotically flat
wings,k( l→6`)→0, separated by an angle ofp. The front
moves with a speedV0, from right to left in Fig. 1.

Increasingk~0! beyond 2V0/D retains the one-loop struc-
ture of the front but changes the asymptotic anglea between
the wingsa52 arcsin[V0/uV(0)u], which goes to zero as
k~0!→`. The front still moves from right to left~Fig. 1!,
now with the velocityuV(0)u.V0 .

Linear stability analysis shows@5# that the solutions are
stable with respect to small localized perturbations that dis-
appear diffusively~with characteristic timeD/V 0

2!, traveling
along the front towards regions of maximum curvature. Non-
localized perturbation may lead to the formation of a pattern
with new parameters.

III. SOLUTIONS BEYOND THE EIKONAL
APPROXIMATION

The steady-state equation for curvature-driven fronts Eq.
~7! is general in the sense that its derivation did not require
us to specify the dependenceV(k). Thus, it allows for ana-
lytical study of wave kinematics beyond the eikonal approxi-
mation for systems where an analytical expression forV(k)
can be derived from corresponding PDE models or experi-
ments.

A. The dependence of velocity on curvature

Experiments with chemical EM show@15,21# that the de-
pendenceV(k) is linear only in a small region of positive
curvature and in a larger region of negative curvature. More
careful analytical@23# and numerical studies@22,24,25# of
PDE’s and cellular automaton models indicate that this
velocity-curvature relation is nonlinear and exhibits a posi-

tive critical curvaturekcr beyond which propagation of a con-
tinuous front is impossible: the front breaks apart in those
regions where its curvature exceeds the critical value@26#.

An analytical evaluation of the nonlinear dependence of
speed on curvature was given by Zykov for two-component
reaction-diffusion systems containing a ‘‘fast’’ variableu
and a ‘‘slow’’ variablev

]u

]t
5DDu1 f ~u,v !,

~14!
]v
]t

5eg~u,v !.

In this case the recovery variablev does not spread in space,
e.g., a BZ medium with the catalyst immobilized in a gel
@27#, or neuromuscular tissue wherev represents the local
permeability of a membrane to transmembrane ionic currents
@28#.

Consideringe as a small dimensionless parameter, Zykov
derived the following approximate relationship for speedV
vs curvaturek of traveling wave@13,23#:

V~k!5
V002Dk

2
6F SV002Dk

2 D 22~eV1!DkG1/2. ~15!

Here V005V02eV1 , whereV0 is the velocity of a plane
front in a medium withe→0 ~the system with highest excit-
ability!, andV1 is a first-order correction of the velocity for
eÞ0 ~which must satisfyV1<V0/e!. The1 sign goes with
the stable branch, depicted in Fig. 2 by a thick solid line, and
the2 sign goes with the unstable branch depicted by a thick
dashed line@29#. For negligibly smalle, the stable branch of
Eq. ~15! approaches the eikonal approximation. For nonzero

FIG. 2. The Zykov dependence of normal propagation velocity
V on curvaturek @Eq. ~15!# is depicted by a thick line: stable
branch by a solid line and unstable branch by a dashed line. The
eikonal approximation is shown by a straight dashed line. The dot-
ted line shows more realistic behavior of the unstable branch than
predicted by Eq.~15!. In this figure and later figures, all quantities
have been scaled to dimensionless values. In particular,D51 and
V050.8.
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e, Eq. ~15! predicts a nearly linear dependence for negative
curvatures and for positive curvatures close to zero. For more
positive curvatures the relationV(k) departs from linearity
and finally, at the point wheredV/dk→`, exhibits the criti-
cal value for curvaturekcr , related to the parametere by the
expression

kcr5
V0

D F12S eV1

V0
D 1/2G2. ~16!

Thus, the critical curvature decreases with increasing contri-
bution ofv to the excitation process. No wave can propagate
with curvature larger than critical. The portion of the front
where curvature reaches the critical value propagates with
nonzero velocityVcr5~V002Dkcr!/2.

B. Phase plane analysis

Substituting Eq.~15! into Eq. ~7! leads to the differential
equation

dk

dl
57kS dkdVDA@V~0!#22@V~k!#2, ~17!

where

dk

dV
52

1

D H 12
eV1~V001eV1!

@V~k!1eV1#
2 J

and ate50 the equation converts into Eq.~9!. Before con-
structing exact solutions to Eq.~17!, it is instructive to plot
dk/dl vs k, in order to get an idea about the number and
character of solutions we have to expect and specific features
of the solutions with Zykov’s velocity-curvature relation
compared to the eikonal approximation solutions.

For the eikonal approximation~e50, and dk/dV521/
D!, a set of orbits is depicted in Fig. 3 by dashed lines. These
orbits are parametrized by the ‘‘initial’’ conditionk~0!. Ar-
rows on orbits show the direction of increasingu l u. All orbits
start at„k~0!, dk/dl50… because the initial value fordk/dl
has been uniquely specified for all orbits as (dk/dl) l5050
by choosingv50 in Eq.~2!. The phase space turns out to be
partitioned into regions corresponding to qualitatively differ-
ent ‘‘motions’’ depending on the value of the ‘‘initial’’ con-
dition k~0!. Loops adjoined to the origin correspond to solu-
tion ~10! and describe, fork~0!,0, V-shaped waves, and for
k(0).2V0/D, one-loop fronts. Periodic orbits on thek.0
half plane correspond to solution~12!. The trivial steady
state at the origink(0)5k( l )50 corresponds to a plane
wave, and the center at~V0/D,0! gives a standing ring. Or-
bits exist for any initial value ofk~0! and cover the whole
phase space except for the vertical axis.

WheneÞ0 orbits occupy only the half plane„k,kcr , dk/
dl… @29#. These are depicted by solid lines in Fig. 3. In spite
of the fact that Zykov’s dependenceV(k) gives a curve
which ends whenk5kcr , all orbits are continuous and
smooth, and therefore the corresponding front intrinsic equa-
tions are expected to be continuous and smooth. Since the
eikonal approximation and Zykov’s dependence are almost
identical for negative curvatures, orbits in the half planek,0
differ only slightly from each other and similarly for the
region of positivek close to zero. Substantial rearrangement

of orbits is limited to the half plane where curvature is much
greater than zero. As Fig. 3 makes clear, the introduction of
positive critical curvature does not destroy looplike and pe-
riodic orbits fork.0 but flattens them at large curvatures so
that the highest curvature they reach iskcr , where dk/dl
turns out to be zero. The latter fact indicates, in particular,
that the branches with positive and negativel match each
other smoothly at the point wherek5kcr . The standing ring
predicted by the eikonal approximation disappears. In this
case we have three different kinds of propagating solutions.

C. Three types of solutions

In order to construct steady-state solutions for the kine-
matic model with Zykov’s functionV(k) it is convenient to
solve the front equation~7! expressingk as a function ofV
from Eq. ~15!

k~V!5
V~V002V!

D~V1eV1!
. ~18!

The front equation becomes

DF eV1

V00

VA@V~0!#22V2
1

S 11
eV1

V00
D

~V002V!A@V~0!#22V2
G dV

dl
51.

~19!

FIG. 3. Phase portrait of Eq.~7! for eikonal approximation Eq.
~8! ~dashed lines! and for Zykov’s dependence~15! ~solid lines!.
Parameter values areD51, V050.8, eV150.04. Arrows on curves
indicate the flow of the trajectories whenl runs from 0 to6`.
Loops in the half planek,0 representV-shaped waves for two
different values of the initial condition: for eikonal curvesk~0!5
20.4 and20.2. Large loops in the half planek.0 correspond to
two one-loop solutions@k~0!52.0 and 1.8#, the separatrix solution
@k~0!51.6#, and an oscillating solution@k~0!50.2#. The correspond-
ing orbits for Zykov’s dependence are shown as the solid lines.
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The first term in the brackets does not depend on the value of
‘‘initial’’ condition V~0! and after being integrated gives the
contribution

2
D

V~0! S eV1

V00
DF~V!,

where F~V!5 lnFV~0!

V
1H SV~0!

V D 221J 1/2G . ~20!

The second term on the left-hand side is responsible for split-
ting solutions of Eq.~19! into three different categories de-
pending on the ratio betweenV00 andV~0!.

~1! WhenV(0).V00, the second term in Eq.~19! can be
integrated to

DS 11
eV1

V00
DF1~V!

A@V~0!#22V00
2

,

where

F1~V!

5 lnFV2~0!2V00V1A$@V~0!#22V00
2 %$@V~0!#22V2%

0.5V00~V002V!
G .

~21!

The general solution for Eq.~19! then is

DF 2

eV1

V00

V~0!
F~V!1

11
eV1

V00

A@V~0!#22V00
2
F1~V!G5 l1L,

~22!

where constantL must be determined from initial conditions.
Taking into account thatV( l50)5V~0!, we get a one-
parameter family of solutions in the following form:

2S eV1

V00
D S 12F V00

V~0!
G2D 1/2F~V!1S 11

eV1

V00
D lnFV2~0!2V00V1A$@V~0!#22V00

2 %$@V~0!#22V2%

V~0!~V2V00!
G5

l

l 0
. ~23!

Substituting Eq.~15! into the left-hand side of Eq.~23! pro-
vides now an intrinsic equation for the wave front line for
given ‘‘initial’’ condition k~0!,0. This solution corresponds
in Fig. 3 to the looplike orbit on the half planek,0 and is
depicted in Fig. 4 in the lower half plane together with the
correspondingV-wave solution in the eikonal approximation.
The slight difference of these solutions around the origin
results in a slightly smaller asymptotic angle of the resulting
V pattern„a52arcsin[V00/V(0)]… compared to the eikonal
approximation@Eq. ~11!#.

In the phase plane the solution~22! for eachV~0! has two
branches. The branch we have just studied starts atl50 with
normal velocityV5V~0! and curvaturek~0!,0, and ends
with V5V00 andk50 when l→`. Another branch starts at
the origin and loops into the positive half planek.0. The
normal velocity of the front on this branch decreases from
V00 at k50 to Vcr at k5kcr . Therefore, there is no point on
the front that we can assign asl50, with V( l50)5V(0),
becauseV(0).V00 by assumption. We must parametrize the
positively curved branch in a different way. Lets be the
wave-front arc length measured from the point where the
curvature reaches its critical value,k(s50)5kcr . Then the
solution ~23! becomes

2S eV1

V00
D S 12F V00

V~0!G
2D 1/2@F~V!2F~Vcr!#1S 11

eV1

V00
D

3@F1~V!2F1~Vcr!#5
s

l 0
. ~24!

Several curves generated by Eq.~24! are depicted in Fig. 4
together with corresponding one-loop solutions of the eiko-
nal approximation. Unlike solutions~23!, solutions~24! dif-

fer from each other not by the value of its velocities~curva-
ture! at s50 but by its width ats50, i.e., by (d2k/ds2)s50.
This derivative is uniquely defined byV~0! through the ex-
pression

S d2kds2D
k5kcr

52
2

D

kcr
2

Vcr1V1e
$@V~0!#22Vcr

2 %. ~25!

FIG. 4. Intrinsic equation curvesk5k( l ) for the eikonal ap-
proximation~dashed lines! and for Zykov’s velocity-curvature de-
pendence~solid lines!. Dotted curves are corresponding separatrix
solutions. The upper group of curves in the upper half plane is
evaluated in the eikonal approximation for initial conditions:V~0!
521.2, V~0!521, andV~0!520.8 ~from the top to the bottom!.
The lower group of curves in this half plane is the corresponding
group of solutions for Zykov’s dependence. Curves in the lower
half plane areV-shaped waves forV~0!51. Other parameters as in
Fig. 3.
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AsV~0! runs fromV00 to infinity, the width of the curvek(s)
given intrinsically by Eq.~24! runs from its finite maximum
value to zero. The front corresponding to this solution is
depicted in the Cartesian frame of reference in Fig. 5, to-
gether with the one-loop front of the eikonal approximation.
Taking into account the existence of a critical curvature
above which sustained wave propagation is impossible, we
find that the loops attributable to breakdown of the eikonal
approximation are converted into singular cusps. Since the
entire pattern propagates along theX axis at a velocityV~0!,
it must be true that

V~s→`!

sin~a/2!
5

V~s→0!

sin~acusp/2!
5V~0!,

wherea is the angle subtended by the wings of the pattern
and acusp is the cusp angle. Therefore,a52
arcsin[V00/V(0)] can berelated to the width of the solution
through Eq.~25! andacusp52 arcsin@Vcr/V~0!# is determined
by the critical curvature.

~2! For V(0)5V00, there exists, besides the trivial solu-
tion k( l )50 corresponding to a plane front, also a nontrivial
separatrix solution. For the separatrix solution it is again
convenient to measure arc lengths from the point where
k(s50)5kcr . Then the solution of Eq.~19! becomes

2S eV1

V00
D @F~V!2F~Vcr!#1S 11

eV1

V00
D F SV001V

V002VD 1/2
2SV001Vcr

V002Vcr
D 1/2G5

s

D/V00
. ~26!

Using Zykov’sV(k), we obtain the separatrix~lower dotted!
curve depicted in Fig. 4. The front line described by this
solution is shown in Fig. 6 together with its counterpart in
the eikonal approximation. Again, the looped front is re-
placed by one with a singular cusp. The cusp angle for this
limiting case is given byacusp52arcsin@Vcr/V00#. The pattern
propagates with the velocity of a planar front.

~3! For the caseVcr,V(0),V00, Eq. ~19! gives the fam-
ily of oscillating solutions

2
D

V~0! S eV1

V00
DF~V!1

DS 11
eV1

V00
D

AV00
2 2@V~0!#2

arccos

3F2
@V~0!#22V00V

V~0!~V002V! G5 l . ~27!

Here we have placed the pointl50 where the curvature of
the front is minimal. Equations~27! and ~15! generatek( l )
depicted in Fig. 7, along with the corresponding eikonal ap-
proximation. The front lines implied by these equations are
shown in Fig. 8. Again, looped fronts of the eikonal approxi-
mation are converted into singular cusps by Zykov’s depen-
dence. The amplitude and period of the front-line space os-
cillations can be determined from Eqs.~3!, ~6!, and~18! and
depend, apart fromV0 V~0!, andD, also on the value of the
critical curvature. For example, the amplitudeA, the distance
from the cusp to the top of the hump, is given by

FIG. 5. The front line corresponding to solution~24! is depicted
in the Cartesian frame of reference~solid line! together with the
one-loop solution~10! for the eikonal approximation~dashed line!.
V~0!52 and other parameters as in Fig. 3.

FIG. 6. The front-line corresponding to solution~26! is depicted
in the Cartesian frame of reference~solid line! together with the
separatrix solution~13! for the eikonal approximation~dashed line!.
In both case, (dy/dx)→` as l→6`.

FIG. 7. One period of the intrinsic equation for solution~27!
~solid line! together with its counterpart in the eikonal approxima-
tion ~dashed line!. The initial condition is chosen asV~0!50.5.
Other parameters as in Fig. 3. Dotted lines are portions of the in-
trinsic equation produced by the unstable brunch ofV(k) ~dotted
line in Fig. 2!.
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A5
D

V~0!
U logF V002Vcr

V002V~0!G2
e

V00
logF V002Vcr

V002V~0! SV~0!

Vcr
D GU.
~28!

Both the amplitude and the period of the front-line oscilla-
tions decrease from infinity to zero whenV~0! runs fromV00
to Vcr . The cusp angle is given by the same expression as for
the solution~24!. The theory of stability developed in@5#
implies that the solutions we have found are geometrically
stable.

IV. DISCUSSION

The solutions we have found describe possible steady-
state wave-front configurations in 2D unrestricted EM. It
turns out that some of them are also relevant to possible
regimes in EM bounded by straight impenetrable boundaries.
No flux at an impenetrable boundary implies that a steady-
state propagating front must always meet the boundary or-
thogonally. For EM restricted to a half plane only three re-
gimes from those we have constructed can satisfy the
required boundary conditions:~1! a plane wave propagating
in the direction parallel to the boundary;~2! a ‘‘tilted’’ plane
wave constituting half of aV-shaped wave whose line of
symmetry coincides with the boundary;~3! an oscillating
front propagating parallel to the boundary and touching the
boundary at the top of its hump. For an EM confined inside
an infinitely long band~two parallel impenetrable bound-
aries!, according to our theory, two steady-state regimes are
possible: a plane wave oriented perpendicular to the
boundaries, and an oscillating front propagating along the
band and touching the boundaries at the tops of its humps.

In @5,7,8# we have shown that solutions in unrestricted
EM are vital ingredients of autowave patterns in layered me-
dia. In particular, in@8# we showed that, when an autowave
travels through a semipenetrable boundary into a less excit-
able medium, it is refracted at an angle that depends on the
discontinuity in excitability. According to the eikonal ap-
proximation, the angle of refraction can run from zero top/2
meaning that refraction is observable for negligibly small
differences and for arbitrarily large differences in excitabil-
ity. Formally this conclusion follows from the fact that solu-

tion ~10!, used as a piece of a steady-state incident wave, can
be smoothly concatenated with a plane-wave fragment of a
steady-state refracted wave at any angle within the interval
~uincident, p/22uincident!. Accounting for critical curvature re-
places solution~10! by Eq. ~23!. The front-line correspond-
ing to Eq.~23! permits only a restricted variation of the angle
between the tangent to the front and the axisOX ~see Fig. 5!,
namely, it runs fromu~k50! up to u~k5kcr!. Hence, the
angle between the asymptote of this solution and the plane
wave smoothly matching it can be only within this restricted
interval. If the difference in properties of EM on the two
sides of the semipenetrable boundary is so large that it would
require an angle outside this interval, refraction is impos-
sible. The wave front will break at the boundary, which may
generate pairs of counter-rotating spiral waves. Similar con-
siderations hold for the total internal reflection of autowaves
described in@8#.

In Sec. III we have shown that the existence of critical
curvature destroys nonphysical self-crossings and loops of
the solutions produced by the eikonal approximation. But the
loops are replaced by singular cusps, which are also not
physically realistic. By taking into account the unstable
branch of the velocity-curvature relation, we believe it will
be possible to remove the singular cusps. The pieces of the
front constructing cusps may turn out to be smoothly con-
nected with solutions supplied by the unstable branch. These
fronts, though smooth and physically interpretable, would be
unstable.

The unstable branch produced by Zykov’s dependence
~15! predicts zero velocity for the unstable plane front, but it
is known @28,30# that the unstable pulse propagates with
nonzero velocity. Numerical evaluations ofV(k) also indi-
cate that the unstable branch crosses theV axis at some
positive value@13,22,25#. A more realistic behavior of the
unstable branch is shown in Fig. 2 by the dotted line. In Fig.
9 the orbit corresponding to the oscillating solution~27! is
depicted together with its counterpart produced by the un-
stable branch. The trajectory flow is singular~nonunique! at
the critical point. Here the stable wings of the solution, in-
stead of being patched to each other, can be patched
smoothly to the solution generated by the unstable branch,
going through a region with high negative curvature~large
loop in the half planek,0!. The resulting intrinsic equation
k( l ) and corresponding front line are depicted qualitatively
in Fig. 7 ~solid and dotted lines together! and Fig. 10, respec-
tively. The resulting front has to be unstable. We suspect that
it has a close affinity with ‘‘cellular’’ flame fronts arising
from an instability based on the interplay between thermal
and molecular diffusivities@31#, and with the development of
unstable space-oscillating fronts in isothermal reaction-
diffusion systems when the diffusivities of reactant and au-
tocatalyst differ appropriately@32#. The study of time-
dependent kinematics, which is currently underway, may
shed light on the mechanism of formation and evolution of
cusplike singularities.

V. CONCLUSIONS

We have found all noncirculating steady-state autowave
front configurations in unbounded EM predicted by the kine-
matic model beyond the eikonal approximation. The nonlin-

FIG. 8. Three periods of the front line corresponding to solution
~27! are depicted in the Cartesian frame of reference~solid line!
together with the oscillating solution~12! for the eikonal approxi-
mation ~dashed line!.
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ear dependence of local propagation velocity on curvature
that we use contains a critical curvature beyond which the
propagation of a continuous front is impossible. The better
velocity-curvature relation does not change the number of

propagating solutions found earlier in the eikonal approxima-
tion but does replace self-crossing solutions by solutions
with singular cusps. We suggest that the unstable branch of
the velocity-curvature relation may convert singular cusps
into physically interpretable smooth cusps, but the front then
becomes unstable.

We have shown that the effect of critical curvature puts
restrictions on the range of allowable angles of reflected and
refracted autowaves. Conditions which force the system to
generate reflected-refracted angles beyond this region would
cause the initially continuous front to break and reform as
spiral waves.
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