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Nonspiral excitation waves beyond the eikonal approximation
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Exact nonplanar traveling solutions for the kinematic model of autowaves in excitable media are constructed
using a nonlinear velocity-curvature relation that is more realistic than the lfaid@na) approximation. The
physically unrealistic self-crossing fronts, found earlier in the eikonal approximation, are replaced by non-
crossing fronts with cusplike singularities that are reminiscent of “cellular” flame structures. The new solu-
tions put restrictions on possible autowave refraction and reflection regimes found in the eikonal approxima-
tion. A possible role of the unstable branch of the velocity-curvature relation in removing the cusplike
singularities from the present solutions is discus$8d063-651X96)04710-1

PACS numbd(s): 03.40.Kf

[. INTRODUCTION approximation for the velocity-curvature relation of propa-
gating fronts beyond the region of its applicability.

From the realm of nonlinear dissipative systems that In this paper we improve the kinematic theory of steady-
spontaneously generate spatially and temporally orderestate autowaves by replacing the eikonal approximation with
structures, we are studying waves propagating in so-called more realistic nonlinear dependence of local front velocity
excitable medigEM)—the model prototype of many actual on front curvature. The nonlinear relation includes a critical
biological and chemical medi§l—3]. The mathematical curvature, beyond which sustained wave propagation is im-
theory of EM is based on systems of nonlinear partial differ-possible, and an unstable branch of slow-speed waves. We
ential equations(PDE’9 of reaction-diffusion type[2,4]. construct all nonspiral steady-state wave-front configura-
Two component models tions, study their properties and discuss the physical interpre-

tation of these solutions. The consequences of critical curva-

Ju ture for autowave refraction-reflection are investigated.

—=D,Au+f(u,v),

at

(1) Il. MODEL AND ITS SOLUTIONS

v IN THE EIKONAL APPROXIMATION

ot = Dodv+g(uv) o

ot The strong nonlinearity of PDE models of EM does not

allow for their exact solution and complicates approximate

are usually satisfactory to reproduce the basic features afnalytical analysis in the most interesting 2D and 3D cases.

EM. The dependent variablesandv are called the excita- To get results, numerical integration of systéin has be-

tion and recovery variables, respectivelly, , are their cor- come very popular. Alternatively, large-scale dynamics of

responding diffusion coefficientd, is the Laplacian operator solitary (noninteracting fronts in 2D and 3D are often suc-

in two or three spatial dimensiorf2D or 3D), andf andg cessfully treated by geometrical mod¢s9—13, the most

are appropriate nonlinear kinetic functions. Under approprielaborate of which is the so-called “kinematic approach.”

ate conditions, these equations admit solutions describingihe results of kinematic theory are often in good agreement

propagating waves of excitatidautowaveswith interesting  with numerical[14,15 and approximate analyticfl6] cal-

geometrical properties. culations on PDE models, and it has proved itself to have
In the extensive literature of EM two kinds of steady-statepredictive power[6,17,1§. The foundations of kinematic

structureg(structures propagating at constant speed with intheory can be found ih3,4,9,19. Below we outline briefly

variant shapedominate: moving plane fronts and rotating only those elements of the approach that are necessary for

spiral waves. In our recent theoretical work we have shownunderstanding this paper.

using a kinematic approadb], that in 2D EM several other

steady-state propagating solutions exist. One example is

V-shaped waves, which have been subsequently studied ex-

perimentally in the Belousov-ZhabotinskBZ) reaction and The kinematic model is based on the assumption that

in numerical experiments with PDE[§]. Three other solu- shape changes of a solitary, modestly curved front can be

tions found produce self-crossing frornisontaining one or  satisfactorily described without keeping track of the dynam-

an infinite number of loopsand, therefore, could not be ics of the excitation pulse. Therefore the kinematic descrip-

identified with any stationary autowave pattern in homogetion reduces a pulse structure in 1D to a single point, so that

neous EM. But they turned out to be crucially important foran excited region in a 2D EM is conceived as an infinitely

constructing steady-state patterns in piecewise inhomogéhin curved line with a normal vector pointing in the direc-

neous EM[5,7,8. The looplike structure of these solutions tion of propagation. Analysis of PDE systems shows that

is, in fact, an artifact generated by extrapolating the lineadiffusion terms make the local velocity of the frovitdepen-

A. Model equations
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dent on front curvaturé&, V=V(k). It is convenient then to Voot fong e ovltng g S0P
specify the shape of the wave front line by an intrinsic equa-

tion k=Kk(l) that relates the curvature of the front to arc

length along the front. Generally speaking, a propagating

front changes its shape with timeand therefor&k=Kk(l,t).

We consider only steady-state frorthose that propagate @) ><:'
with invariable shapesfor which ¢k/dt=0. Thenk(l), for

infinitely extended endless front&0], satisfies the following
integro-differential equation,

( ) 0 1 ; KO0)/(V,/D)
! dV(k(l
[ oviene: “g Pl =o. @

FIG. 1. Shapes of steady-state autowave fronts corresponding to

ina further the right-hand sid | solutions of the kinematic model in the eikonal approximation. So-
By putting further the right- an. sl Ft' equ@ to _zeérm=0),_ lutions are parametrized by the “initial” valuk(0). Properties of
we exclude from present consideration spiral-like solutiong,,ch pattern are discussed in the text.

for which w=const>0 [9]. Notice also that such a choice

places the origin(l=0) at a point on the front where its \yperev depends ot throughk:  V=V(k(l)). For a given

velocity is extremal, §V/dl),—,=0. A boundary condition \/—y/(k), Eq.(7) can be rewritten as a first-order differential
k(0), consistent with the extremal-velocity condition, has toequation fork(1).

be specified in order to determine a unique solution of Eq.
2.

The intrinsic equationk(l) defines the front curve
uniguely except for its position and orientation on a plane. It follows from both experimentf21] and theoretical con-
Parametric representation of an actual front line in the Carsiderationg§22—25 that the dependence of local front veloc-
tesian frame of reference can be constructed from the intrinity V on curvaturek, for modestly curved fronts, can be
sic equation by a standard procedure: taken as linear

B. Solutions of the kinematic model in eikonal approximation

I V(k)=Vy,—Dk. 8
K= | sinorende, (0=Vo ®
Here V, is the velocity of the planar fronk=0), andD is
the diffusion coefficient of the excitation variable. Substitut-

|
y(I)=J coq0(¢é))d¢, (3 ing Eq.(8) into Eq.(7) gives
0
wherex andy are Cartesian coordinates of the front line, and D ((jj_ll( =Fk(1)V[Vo— Dk(0)]>—[V,— Dk]?. 9)
|
0(|)=—fok(§)d§ (4 Solutions of this equation parametrized by the “initial”

valuek(0) have been studied iib].

is the angle between the tangent to the wave front at the For k(0)<O, the front propagates in the form of a
point| and the axi©Y, taken as positive if measured clock- V-shaped wav¢15,17. Its profile is given by the soliton-

wise from the positive direction of the ax@Y. type expression
For noncirculating solutions a simplification of the -
integro-differential equatior(2) turns out to be possible. k()= - 1 [V(O)]"=Vq Cwcl<w (10
Multiplying Eq. (2) by V(k), integrating once, and changing D ' '
variables froml to 6, we get Vo+V(0)COS|< E)
2
[fg(l)V( 0)do| +[V(6)]12=[V(0)]% (5)  with characteristic length,=D{|[V(0)]°—V}|} 2 The
0 curvature of this front is always negative and its magnitude

decreases exponentially to zero [flsgoes to infinity. The

where V(0) denotes the_ nor_mal velocity of the wave at asymptotic angle between the wings follows directly from
#=1=0 and is to be distinguished froi,, the velocity at Eq. (6)

k=0. The solution of Eq.(5) satisfying the condition
(dVvidl)—o=0is

| Vo }
=7—20(l - *x0)=2 A 11
V(6)=V(0)cog 0). ©6) a=m=26( ) arCSI+V(O) a1

Equation(6) implies that a steady-state wave must move as &he V-shaped wave moves uniformly, with velocity
whole along theX axis with a spee/(0). Differentiating Eq.  V(0)>V,, (i.e., faster than a planar fronfrom left to right

(6) with respect td, gives as shown in Fig. 1. A%(0)—0, the angle between asymp-
v totes of theV-shaped wave increases#cand the velocity of
he pattern decreasesVg, that is the pattern converts into a
k()0 P= V2 t
dl KNIVIO)T"= V7, @ plane wavek=0).
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Positivek(0) produces space-oscillating fronts described

by
[V(0)]?-V3

I)'

lo

1
kih=-5 12

V0+V(O)cos<

As k(0) increases from zero up tk(0)=V,/D, both the
amplitude and period of the oscillations in front curvature
decrease: the amplitude frow,/D to zero, and period
from infinity to 277D/V,. The front propagates with a speed
V(0)<V,, from left to right as depicted in Fig. 1. At
k(0)=V,/D the front degenerates to a standing ring of ra-
dius 1k=Vy/D. Whenk(0) becomes greater thar,/D and
moves toward ¥,/D, the space-oscillating front appears

again but now the behavior of its amplitude and period is

opposite to that which took place wh&fD) ran from zero to
V/D. Also the direction of front propagation reverses: the
front moves from right to left in Fig. 1 with speed
[V(0)|<V,.

The valuek(0)=2V,/D corresponds to a separatrix solu-
tion, with algebraic soliton-type shape

2V, /D
I )2'

Mo,

k(l)= (13

ND JOHN J. TYSON
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[FF ==
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FIG. 2. The Zykov dependence of normal propagation velocity
V on curvaturek [Eq. (15)] is depicted by a thick line: stable
branch by a solid line and unstable branch by a dashed line. The
eikonal approximation is shown by a straight dashed line. The dot-
ted line shows more realistic behavior of the unstable branch than
predicted by Eq(15). In this figure and later figures, all quantities
have been scaled to dimensionless values. In particDlarl and
V,=0.8.

tive critical curvaturek,, beyond which propagation of a con-

This front retains only one loop and has asymptotically flatijn,ous front is impossible: the front breaks apart in those

wings, k(I — =) —0, separated by an angle of The front
moves with a speelfy, from right to left in Fig. 1.

Increasingk(0) beyond 2/,/D retains the one-loop struc-
ture of the front but changes the asymptotic angleetween
the wings a=2 arcsinlV,/|V(0)|], which goes to zero as
k(0)—. The front still moves from right to leftFig. 1),
now with the velocity|V(0)|>V,.

Linear stability analysis show$] that the solutions are
stable with respect to small localized perturbations that dis
appear diffusively(with characteristic timé/V 3), traveling

along the front towards regions of maximum curvature. Non-
localized perturbation may lead to the formation of a pattern

with new parameters.

IIl. SOLUTIONS BEYOND THE EIKONAL
APPROXIMATION

The steady-state equation for curvature-driven fronts Eq
(7) is general in the sense that its derivation did not requir
us to specify the dependen®&k). Thus, it allows for ana-
lytical study of wave kinematics beyond the eikonal approxi-
mation for systems where an analytical expressionvik)
can be derived from corresponding PDE models or experi
ments.

e

regions where its curvature exceeds the critical vait@.

An analytical evaluation of the nonlinear dependence of
speed on curvature was given by Zykov for two-component
reaction-diffusion systems containing a “fast” variable
and a “slow” variablev

u =DAu+f
E_ u (u!v)l

; (14
a—lt)zeg(u,v).

In this case the recovery variahledoes not spread in space,
e.g., a BZ medium with the catalyst immobilized in a gel
[27], or neuromuscular tissue wheverepresents the local
permeability of a membrane to transmembrane ionic currents
[28].

" Consideringe as a small dimensionless parameter, Zykov

derived the following approximate relationship for spaéd
vs curvaturek of traveling wave 13,23

VOO_ D k VOO_ D k 2 12
- V(k)= > + > —(eV1)Dk (15

Here Voo=V,— €V, wWhereV, is the velocity of a plane

A. The dependence of velocity on curvature front in a medium withe—0 (the system with highest excit-
Experiments with chemical EM shojt5,2]] that the de-  ability), andV, is a first-order correction of the velocity for
pendenceV(k) is linear only in a small region of positive e#0 (which must satisfW;<Vy/e). The + sign goes with
curvature and in a larger region of negative curvature. Morédhe stable branch, depicted in Fig. 2 by a thick solid line, and
careful analytical23] and numerical studief22,24,29 of  the — sign goes with the unstable branch depicted by a thick
PDE's and cellular automaton models indicate that thisdashed lind29]. For negligibly smalle, the stable branch of
velocity-curvature relation is nonlinear and exhibits a posi-Eq. (15) approaches the eikonal approximation. For nonzero
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¢, Eq. (15) predicts a nearly linear dependence for negative ak/dl
curvatures and for positive curvatures close to zero. For more
positive curvatures the relatiovi(k) departs from linearity 15 .

and finally, at the point wherdV/dk—o, exhibits the criti-
cal value for curvaturéd,,, related to the parameterby the
expression

1/2]2

Vo

EVl
B _

Vo

Ker=

(16)

Thus, the critical curvature decreases with increasing contri-
bution ofv to the excitation process. No wave can propagate
with curvature larger than critical. The portion of the front
where curvature reaches the critical value propagates with
nonzero velocity = (Vgo— Dk¢,)/2.

G I
by

B. Phase plane analysis

Substituting Eq(15) into Eq. (7) leads to the differential
equation

dk —k(dk)\/v CRREVTIRLE . 154 «
a1 = K| gy VO P- [V P, (17)
FIG. 3. Phase portrait of Eq7) for eikonal approximation Eq.
where (8) (dashed linesand for Zykov's dependencel5) (solid lines.
Parameter values ai2=1, V,=0.8, €V;=0.04. Arrows on curves
dk . 1 €V1(Voot €Vy) indicate the flow of the trajectories whenruns from 0 to=*oo.
dVv. D |° [V(K+eV,]? Loops in the half plan&k<O0 representV-shaped waves for two
different values of the initial condition: for eikonal curvk)=
and ate=0 the equation converts into E¢Q). Before con- —0.4 and—0.2. Large loops in the half plarie>0 correspond to

structing exact solutions to EL7), it is instructive to plot  two one-loop solution$k(0)=2.0 and 1.8 the separatrix solution

dk/dl vs k, in order to get an idea about the number andk(0)=1.6], and an oscillating solutiofk(0)=0.2]. The correspond-

character of solutions we have to expect and specific featurddg orbits for Zykov's dependence are shown as the solid lines.

of the solutions with Zykov's velocity-curvature relation

compared to the eikonal approximation solutions. of orbits is limited to the half plane where curvature is much
For the eikonal approximatiofe=0, anddk/dV=—1/  greater than zero. As Fig. 3 makes clear, the introduction of

D), a set of orbits is depicted in Fig. 3 by dashed lines. Thes@ositive critical curvature does not destroy looplike and pe-

orbits are parametrized by the “initial” conditiok(0). Ar- riodic orbits fork>0 but flattens them at large curvatures so

rows on orbits show the direction of increasiig All orbits ~ that the highest curvature they reachkig, where dk/d|

start at(k(0), dk/dI=0) because the initial value fatk/dl ~ turns out to be zero. The latter fact indicates, in particular,

has been uniquely specified for all orbits atk{dl),_,=0 that the branches with positive and negativenatch each

by choosingw=0 in Eq.(2). The phase space turns out to be other smoothly at the point wheke=k,. The standing ring

partitioned into regions corresponding to qualitatively differ- predicted by the eikonal approximation disappears. In this

ent “motions” depending on the value of the “initial” con- case we have three different kinds of propagating solutions.

dition k(0). Loops adjoined to the origin correspond to solu-

tion (10) and describe, fok(0)<0, V-shaped waves, and for

k(0)>2V,/D, one-loop fronts. Periodic orbits on the>0 . )

half plane correspond to solutiofi2). The trivial steady In order to construct steady_—state splynons for_the kine-

state at the origirk(0)=k(I)=0 corresponds to a plane matic model with Zykpv’s functlor\((k) it is convement to

wave, and the center &/,/D,0) gives a standing ring. Or- solve the front equatiofi7) expressind as a function ofv

bits exist for any initial value ok(0) and cover the whole from Eg.(15)

phase space except for the vertical axis. V(Vgo— V)
When e#0 orbits occupy only the half plang<k,,, dk/ k(V)= _~'0 7

dl) [29]. These are depicted by solid lines in Fig. 3. In spite D(V+eVy)

of the fact that Zykov's dependencé(k) gives a curve

which ends whenk=k, all orbits are continuous and The front equation becomes

smooth, and therefore the corresponding front intrinsic equa-

tions are expected to be continuous and smooth. Since the eV eV

. . . 1 1
eikonal approximation and Zykov’'s dependence are almost v (1+ V—) dv
identical for negative curvatures, orbits in the half plare) 00 00

+ —_—
differ only slightly from each other and similarly for the V\/[V(O)]Z—V2 (VOO—V)\/[V(O)]Z—V2 dl
region of positivek close to zero. Substantial rearrangement (19

C. Three types of solutions

(18
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The first term in the brackets does not depend on the value afhere
“initial” condition V(0) and after being integrated gives the

contribution Fi(V)
_ D (f_\’l) FV) | VA0 ~Voov+ VIO P - VEHIVO) TP V7
V(O) VOO , =n 0.5\/00(V00_ V) '
V(0) V(0)\2 |2 (21)
where F(V)=In T+ (T -1 . (20
The general solution for Eq19) then is
The second term on the left-hand side is responsible for split-
ting solutions of Eq(19) into three different categories de- eV, 1 €V
pending on the ratio betweét, and V(0). Voo + Voo
(1) WhenV(0)>V,,, the second term in E419) can be D| - V(0) F(V)+ \/ﬁ Fi(V)|=1+L,
integrated to [V(0)]"= Voo
(22)
€Vy
D|1+ V_> Fi(V) where constarit must be determined from initial conditions.
002 o Taking into account thaiv/(l=0)=V(0), we get a one-
VIV(0)12-V5, parameter family of solutions in the following form:
|
. (f_\’l) ( 1_{ Vao D R e_vl)m{vz(m—voow VOV Vo=V 1
Voo V(0) Voo V(0)(V—=Vqo) lo’

Substituting Eq(15) into the left-hand side of Eq23) pro-  fer from each other not by the value of its velocitiesirva-
vides now an intrinsic equation for the wave front line for ture) at s=0 but by its width ats=0, i.e., by @%k/ds?)<_o.

given “initial” condition k(0)<0. This solution corresponds This derivative is uniquely defined by(0) through the ex-
in Fig. 3 to the looplike orbit on the half plafde<0 and is  pression

depicted in Fig. 4 in the lower half plane together with the

. L . T 2 2
corresponding/-wave solution in the eikonal approximation. d°k 2 Ker V(0)12— /2 5
The slight difference of these solutions around the origin ds?),_, D Vg+Vie VO =Ved. (29
results in a slightly smaller asymptotic angle of the resulting S

V pattern(a=2arcsinV,y/V(0)]) compared to the eikonal

approximation Eq. (11)]. k

In the phase plane the soluti¢®?2) for eachV(0) has two
branches. The branch we have just studied staits @twith
normal velocityV=V(0) and curvaturek(0)<0, and ends
with V=V, andk=0 whenl—c. Another branch starts at
the origin and loops into the positive half plake-0. The
normal velocity of the front on this branch decreases from
Voo atk=0 to V., at k=K. Therefore, there is no point on
the front that we can assign &s-0, with V(I=0)=V(0),
because/(0)>Vy, by assumption. We must parametrize the
positively curved branch in a different way. Letbe the
wave-front arc length measured from the point where the
curvature reaches its critical value(s=0)=Kk.. Then the
solution (23) becomes

eV Voo 12\ 212 eV FIG. 4. Intrinsic equation curvek=Kk(l) for the eikonal ap-
_ (_1) ( 1—| %0 ) [F(V)—F(Vg) ]+ ( 1+ _1) proximation (dashed linesand for Zykov's velocity-curvature de-
Voo V(0) Voo pendencesolid lineg. Dotted curves are corresponding separatrix

solutions. The upper group of curves in the upper half plane is
X[F1(V)=F1(Ve)]= S (24)  evaluated in the eikonal approximation for initial conditions/(0)
lo =-1.2,V(0)=—1, andV(0)=—0.8 (from the top to the bottoin
The lower group of curves in this half plane is the corresponding
Several curves generated by EB4) are depicted in Fig. 4 group of solutions for Zykov's dependence. Curves in the lower
together with corresponding one-loop solutions of the eiko-alf plane arev/-shaped waves fov(0)=1. Other parameters as in
nal approximation. Unlike solution@3), solutions(24) dif- Fig. 3.
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FIG. 5. The front line corresponding to soluti@¥) is depicted
in the Cartesian frame of referenésolid line together with the
one-loop solutior(10) for the eikonal approximatiofdashed ling
V(0)=2 and other parameters as in Fig. 3.

FIG. 6. The front-line corresponding to soluti¢®6) is depicted
in the Cartesian frame of referen¢solid line) together with the
separatrix solutiorf13) for the eikonal approximatiofdashed ling
In both case, dy/dx) —« asl— oo,

As V(0) runs fromV, to infinity, the width of the curvé(s)

given intrinsically by Eq(24) runs from its finite maximum D( 1+ 6_\/1)

value to zero. The front corresponding to this solution is D [eV, 00

depicted in the Cartesian frame of reference in Fig. 5, to- - W (V_cm)F(V)+ m arccos
gether with the one-loop front of the eikonal approximation. 00

Taking into account the existence of a critical curvature [V(0)]2— VoV

above which sustained wave propagation is impossible, we [— W}zl. (27)

find that the loops attributable to breakdown of the eikonal
approximation are converted into singular cusps. Since the

entire pattern propagates along exis at a velocitt/(0),  Here we have placed the poiht0 where the curvature of

it must be true that the front is minimal. Equation§27) and (15) generatek(l)
depicted in Fig. 7, along with the corresponding eikonal ap-
V(s— ) V(s—0) proximation. The front lines implied by these equations are
sin(al?) = Sin( agsd2) =V(0), shown in Fig. 8. Again, looped fronts of the eikonal approxi-

mation are converted into singular cusps by Zykov's depen-
: . dence. The amplitude and period of the front-line space os-
where a is the_z angle subtended by the wings of the Battemcillations can be?determinedpfrom Ed8), (6), and(18) F;nd
and_ usp 1S the ~cusp - angle. . Therefore,a—? depend, apart frorv, V(0), andD, also on the value of the
arcsinVo/V(0)] can berelated to the width .Of the sol_utlon critical curvature. For example, the amplitullethe distance
through Eq.(25) and ag,qi=2 arcsifVe/V(0)] is determined from the cusp to the top of the hump, is given by
by the critical curvature.

(2) For V(0)=V,q, there exists, besides the trivial solu-
tion k(l) =0 corresponding to a plane front, also a nontrivial k
separatrix solution. For the separatrix solution it is again
convenient to measure arc lengshfrom the point where

k(s=0)=K. Then the solution of Eq.19) becomes \\ 14 ,/
~ 4
r—~._ 05+ -
(EVl)[Fm F(Ve)l+| 1+ €V1>[ VOO+V)1/2 A e
Voo “ Voo/ [\ Voo—V 6 ' 4 2 2 4 : 6
Voot Ve | ¥4 s : 1
_ 00 cr _ . (26) -1

Voo~ Ver D/Voo :

Using Zykov'sV(k), we obtain the separatrifower dotted 2T

curve depicted in Fig. 4. The front line described by this
solution is shown in Fig. 6 together with its counterpart in
the eikonal approximation. Again, the looped front is re- g1 7. One period of the intrinsic equation for solutit2i)
placed by one with a singular cusp. The cusp angle for thigsolid line) together with its counterpart in the eikonal approxima-
limiting case is given byr, q=2arcsifV/Vqo]. The pattern  tion (dashed ling The initial condition is chosen ag(0)=0.5.
propagates with the velocity of a planar front. Other parameters as in Fig. 3. Dotted lines are portions of the in-

(3) For the cas&/,,<V(0)<Vq, Eq. (19 gives the fam- trinsic equation produced by the unstable brunch/¢k) (dotted
ily of oscillating solutions line in Fig. 2.
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y tion (10), used as a piece of a steady-state incident wave, can
be smoothly concatenated with a plane-wave fragment of a
107 steady-state refracted wave at any angle within the interval

_\ (Bncidents ™2 6Gincigend- Accounting for critical curvature re-

—————————————— 1 places solutior(10) by Eq. (23). The front-line correspond-

> ing to Eq.(23) permits only a restricted variation of the angle
«zZ - - T T ---Z-TT= Z between the tangent to the front and the & (see Fig. 3,
F '_T_ — + X namely, it runs fromé(k=0) up to 8(k=k.). Hence, the
I _2____-Z= - . angle between the asymptote of this solution and the plane
A wave smoothly matching it can be only within this restricted

————————————— interval. If the difference in properties of EM on the two
_’// sides of the semipenetrable boundary is so large that it would
-104 require an angle outside this interval, refraction is impos-
sible. The wave front will break at the boundary, which may
generate pairs of counter-rotating spiral waves. Similar con-
siderations hold for the total internal reflection of autowaves
described in8].

In Sec. Ill we have shown that the existence of critical
curvature destroys nonphysical self-crossings and loops of
the solutions produced by the eikonal approximation. But the

€ VOO_ VCI’ V(O) . .
}__| g[ ( ” loops are replaced by singular cusps, which are also not

Voo [ Voo=V(0) | Vg physically realistic. By taking into account the unstable
branch of the velocity-curvature relation, we believe it will
be possible to remove the singular cusps. The pieces of the
front constructing cusps may turn out to be smoothly con-

toV.. The cusp anale is aiven by the same exoression as f nected with solutions supplied by the unstable branch. These
er pang g y p qfonts, though smooth and physically interpretable, would be

the solution(24). The theory of stability developed ifb]

implies that the solutions we have found are geometricallyunStable'

stable The unstable branch produced by Zykov's dependen_ce
: (15) predicts zero velocity for the unstable plane front, but it

is known [28,3( that the unstable pulse propagates with
IV. DISCUSSION nonzero velocity. Numerical evaluations (k) also indi-

ate that the unstable branch crosses thaxis at some

ositive value[13,22,25. A more realistic behavior of the

nstable branch is shown in Fig. 2 by the dotted line. In Fig.

FIG. 8. Three periods of the front line corresponding to solution
(27) are depicted in the Cartesian frame of referefsid line)
together with the oscillating solutiofl2) for the eikonal approxi-
mation (dashed ling

A= D Iog[ VOO_Vcr
V(0) Voo—V(0)

Both the amplitude and the period of the front-line oscilla-
tions decrease from infinity to zero wh&tt0) runs fromVg,

The solutions we have found describe possible stead)E
state wave-front configurations in 2D unrestricted EM. 1tP

turns out that some of them are also relevant to possibl‘g th bit ding to th ilati luti ;
regimes in EM bounded by straight impenetrable boundarie € orbit corresponaing 1o the oscifiating soiu i) is
depicted together with its counterpart produced by the un-

No flux at an impenetrable boundary implies that a steady wable b h The traiectory flow is si . .
state propagating front must always meet the boundary or\@v'e branch. The trajectory Tiow IS singu{aonunique a

thogonally. For EM restricted to a half plane only three re_the critical pqint. Here the stable wings of the solution, in-
gimes from those we have constructed can satisfy thé’tead of being patched to each other, can be patched

required boundary condition$l) a plane wave propagating smpothly to the solqtion generated by t.he unstable branch,
in the direction parallel to the boundar(®) a “tilted” plane ~ 9°'"9 through a region with high negative curvatdfarge

wave constituting half of a/-shaped wave whose line of loop in the half plané&<0). The resulting intrinsic equation

symmetry coincides with the boundard) an oscillating k(1) and corresponding front line are depicted qualitatively

front propagating parallel to the boundary and touching thé.n Fig. 7 (solid and dotted lines togetheand Fig. 10, respec-

boundary at the top of its hump. For an EM confined inside.tively' The resultin'g_front_has to be unstable. We susp_e_ct that
an infinitely long band(two parallel impenetrable bound- it has a Ploseb_?ﬁ'nl;ty W('jth cillul_ar flzla\mebfronts arlslng |
arieg, according to our theory, two steady-state regimes arérom an Instability based on the interplay between therma
possible: a plane wave oriented perpendicular to thé"f‘rld molecular d|ffu5|y|t|¢§31], and W'.th the development (.Df

boundaries, and an oscillating front propagating along thémSta.ble space-oscillating frpnts_ n isothermal reaction-
band and touching the boundaries at the tops of its humpsd'ffus'on systems when the diffusivities of reactant and au-

In [5,7,8 we have shown that solutions in unrestrictedtoc"’ltaIySt differ appropriately{32]. The study of time-

EM are vital ingredients of autowave patterns in layered meplepen_dent Kinematics, W_h'Ch IS curre_ntly underwayz may
dia. In particular, i8] we showed that, when an autowave shed _I|ght_on thg _mechanlsm of formation and evolution of
travels through a semipenetrable boundary into a less excifUSPlike singularities.

able medium, it is refracted at an angle that depends on the

discc_)ntin_uity in excitability. Acqording to the eikonal ap- V. CONCLUSIONS

proximation, the angle of refraction can run from zerai@

meaning that refraction is observable for negligibly small We have found all noncirculating steady-state autowave
differences and for arbitrarily large differences in excitabil- front configurations in unbounded EM predicted by the kine-
ity. Formally this conclusion follows from the fact that solu- matic model beyond the eikonal approximation. The nonlin-
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i K FIG. 10. The front lines corresponding to the oscillating solution
\ ," Al (27) (dashed lingand to the oscillating solution accounting for the
‘.| 7 unstable branch iv(k) (solid line).
4
t s . . . . . .
H s propagating solutions found earlier in the eikonal approxima-
‘.‘ Vi 21 tion but does replace self-crossing solutions by solutions
' '," with singular cusps. We suggest that the unstable branch of
5\ S the velocity-curvature relation may convert singular cusps
e into physically interpretable smooth cusps, but the front then
3= becomes unstable.

We have shown that the effect of critical curvature puts
FIG. 9. The orbit of oscillating solution for stable branch of restrictions on the range of allowable angles of reflected and
Zykov's dependence/(k) is depicted by solid lingV(0)=0.5].  yefracted autowaves. Conditions which force the system to
Dashed line denotes the portion of the orbit generated by the Urhenerate reflected-refracted angles beyond this region would
stable branch inv(k) shown in Fig. 2 by the dotted line. Other 5,56 the initially continuous front to break and reform as
parameters as in Fig. 3. spiral waves.

ear dependence qf local propagatlon velocity on cu'rvature ACKNOWLEDGMENTS
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